Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 34(10): 2278-2288, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37647027

RESUMEN

Nowadays, synthetic polymers are produced and used in many materials for different applications. Matrix-assisted laser desorption/ionization or electrospray mass spectrometry are classically used to investigate them, but these techniques require sample preparation steps, which are not always suitable for the study of insoluble or formulated polymers. Alternatively, direct real-time (DART) ionization analysis may be conducted without sample preparation. Four polyvinylidene fluoride (PVDF) polymers involving the C2H2F2 repeating unit coming from different suppliers have been analyzed by DART Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in negative-ion mode. The obtained mass spectra systematically displayed an oligomeric distribution between m/z 400 and 1300 of [M - H]-, [M + O2]•-, and [M + NO2]- ions. Kendrick plots were used to ease the identification of PVDF end-groups and establish a difference between the samples. Both commercial PVDF polymers shared the same α+ω end groups formula, which confirmed a similar polymerization process for their synthesis. The two other PVDFs were clearly different from the commercial ones by the occurrence of specific end-groups. MS/MS and MS3 experiments were conducted to obtain structural information on these end-groups.

2.
Molecules ; 27(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558021

RESUMEN

The conversion of lignocellulosic biomass by pyrolysis or hydrothermal liquefaction gives access to a wide variety of molecules that can be used as fuel or as building blocks in the chemical industry. For such purposes, it is necessary to obtain their detailed chemical composition to adapt the conversion process, including the upgrading steps. Petroleomics has emerged as an integral approach to cover a missing link in the investigation bio-oils and linked products. It relies on ultra-high-resolution mass spectrometry to attempt to unravel the contribution of many compounds in complex samples by a non-targeted approach. The most recent developments in petroleomics partially alter the discriminating nature of the non-targeted analyses. However, a peak referring to one chemical formula possibly hides a forest of isomeric compounds, which may present a large chemical diversity concerning the nature of the chemical functions. This identification of chemical functions is essential in the context of the upgrading of bio-oils. The latest developments dedicated to this analytical challenge will be reviewed and discussed, particularly by integrating ion source features and incorporating new steps in the analytical workflow. The representativeness of the data obtained by the petroleomic approach is still an important issue.


Asunto(s)
Mezclas Complejas , Aceites , Espectrometría de Masas/métodos , Energía Renovable , Biomasa , Biocombustibles/análisis
3.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 95-108, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30440095

RESUMEN

RATIONALE: The chemical composition of the particulate phase of cigarette smoke inhaled by the active smoker is still poorly known in spite of its importance from a health point of view. A non-targeted approach is applied to cigarette smoke particles collected on a quartz filter to obtain an as complete as possible description of this complex mixture. METHODS: A home-made smoking machine including devices for volatile organic compounds (VOCs) and particle sampling was used. The validation of the cigarette smoking and cigarette smoke collection procedures was conducted by the quantification of some compounds by gas chromatography/mass spectrometry (GC/MS). The particles were investigated by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) directly after their collection on quartz filters by laser/desorption ionization (LDI) or after extraction with CH2 Cl2 by electrospray ionization (ESI). RESULTS: The determination of the benzene, toluene, ethylbenzene and xylenes (from 2 to 35 µg/cigarette) and nicotine (0.68 ± 0.05 mg/cigarette) validated the used sampling method. The complementarity of the LDI and ESI sources for the cigarette smoke analysis was established. The ESI analyses evidenced polar compounds and components with a pyridine group and LDI ensured the detection of poly-condensed heteroaromatic species. Finally, this methodology was employed to characterize particles from cigarettes with or without flavoring additives. CONCLUSIONS: Some insights into the composition of cigarette smoke inhaled by active smokers have been obtained. The ~1750 observed features revealed the huge complexity of cigarette smoke particles and the diversity of the possible associated health issues. Both heteroaromatic and highly oxygenated compounds produced by combustion and pyrolysis have been highlighted.


Asunto(s)
Nicotiana , Humo/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Productos de Tabaco , Aerosoles/análisis , Derivados del Benceno/análisis , Compuestos Orgánicos Volátiles/análisis
4.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 50-59, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29971833

RESUMEN

RATIONALE: Secondary organic aerosols (SOAs) represent a significant portion of total atmospheric aerosols. They are generated by the oxidation of volatile organic compounds (VOCs), and particularly biogenic VOCs (BVOCs). The analysis of such samples is usually performed by targeted methods that often require time-consuming preparation steps that can induce loss of compounds and/or sample contaminations. METHODS: Recently, untargeted methods using high-resolution mass spectrometry (HRMS) have been successfully employed for a broad characterization of chemicals in SOAs. Herein we propose a new application of the direct analysis in real time (DART) ionization method combined with HRMS to quickly detect several hundred chemicals in SOAs collected on a quartz filter without sample preparation or separation techniques. RESULTS: The reproducibility of measurements was good, with several hundred elemental compositions common to three different replicates. The relative standard deviations of the intensities of the chemical families ranged from 6% to 35%, with sufficient sensitivity to allow the unambiguous detection of 4 ng/mm2 of pinic acid. The presence of oligomers and specific tracers was highlighted by MSn (n ≤ 4) experiments, an achievement that is difficult to attain with other ultrahigh-resolution mass spectrometers. Contributions of this untargeted DART-HRMS method were illustrated by the analysis of fresh and aged SOAs from different gaseous precursors such as limonene, a ß-pinene/limonene mixture or scots pines emissions. CONCLUSIONS: The results show that it is possible to use DART-HRMS for the identification of tracers of specific aging reactions, or for the identification of aerosols from specific biogenic precursors.


Asunto(s)
Aerosoles/análisis , Espectrometría de Masas/métodos , Monoterpenos/análisis , Compuestos Orgánicos Volátiles/análisis , Aerosoles/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Monoterpenos/química , Oxidación-Reducción , Compuestos Orgánicos Volátiles/química
5.
Anal Bioanal Chem ; 408(21): 5677-5687, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27318472

RESUMEN

Direct Analysis in Real Time (DART™) high-resolution Orbitrap™ mass spectrometry (HRMS) in combination with Raman microscopy was used for the detailed molecular level characterization of explosives including not only the charge but also the complex matrix of binders, plasticizers, polymers, and other possible organic additives. A total of 15 defused military weapons including grenades, mines, rockets, submunitions, and mortars were examined. Swabs and wipes were used to collect trace (residual) amounts of explosives and their organic constituents from the defused military weapons and micrometer-size explosive particles were transferred using a vacuum suction-impact collection device (vacuum impactor) from wipe and swap samples to an impaction plate made of carbon. The particles deposited on the carbon plate were then characterized using micro-Raman spectroscopy followed by DART-HRMS providing fingerprint signatures of orthogonal nature. The optical microscope of the micro-Raman spectrometer was first used to localize and characterize the explosive charge on the impaction plate which was then targeted for identification by DART-HRMS analysis in both the negative and positive modes. Raman spectra of the explosives TNT, RDX and PETN were acquired from micrometer size particles and characterized by the presence of their characteristic Raman bands obtained directly at the surface of the impaction plate nondestructively without further sample preparation. Negative mode DART-HRMS confirmed the types of charges contained in the weapons (mainly TNT, RDX, HMX, and PETN; either as individual components or as mixtures). These energetic compounds were mainly detected as deprotonated species [M-H](-), or as adduct [M + (35)Cl](-), [M + (37)Cl](-), or [M + NO3](-) anions. Chloride adducts were promoted in the heated DART reagent gas by adding chloroform vapors to the helium stream using an "in-house" delivery method. When the polarity was switched to positive mode, DART-HRMS revealed a very complex distribution of polymeric binders (mainly polyethylene glycols and polypropylene glycols), plasticizers (e.g., dioctyl sebacate, tributyl phosphate), as well as wax-like compounds whose structural features could not be precisely assigned. In positive mode, compounds were identified either as protonated molecules or ammonium adduct species. These results clearly demonstrate the complementarity of micro-Raman microscopy combined with DART-MS. The former technique provides structural information on the type of explosives present at the surface of the sample, whereas the latter provides not only a confirmation of the nature of the explosive charge but also useful additional information regarding the nature of the complex organic matrix of binders, plasticizers, polymers, oils, and potentially other organic additives and contaminants present in the sample. Combining these two techniques provides a powerful tool for the screening, comprehensive characterization, and differentiation of particulate explosive samples for forensic sciences and homeland security applications. Graphical Abstract Comprehensive characterization of explosive particles collected from swipe samples by micro-Raman and DART™-HRMS.

6.
J Chromatogr A ; 1433: 24-33, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26777783

RESUMEN

A method for the sensitive quantification of trace amounts of organic explosives in water samples was developed by using stir bar sorptive extraction (SBSE) followed by liquid desorption and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The proposed method was developed and optimized using a statistical design of experiment approach. Use of experimental designs allowed a complete study of 10 factors and 8 analytes including nitro-aromatics, amino-nitro-aromatics and nitric esters. The liquid desorption study was performed using a full factorial experimental design followed by a kinetic study. Four different variables were tested here: the liquid desorption mode (stirring or sonication), the chemical nature of the stir bar (PDMS or PDMS-PEG), the composition of the liquid desorption phase and finally, the volume of solvent used for the liquid desorption. On the other hand, the SBSE extraction study was performed using a Doehlert design. SBSE extraction conditions such as extraction time profiles, sample volume, modifier addition, and acetic acid addition were examined. After optimization of the experimental parameters, sensitivity was improved by a factor 5-30, depending on the compound studied, due to the enrichment factors reached using the SBSE method. Limits of detection were in the ng/L level for all analytes studied. Reproducibility of the extraction with different stir bars was close to the reproducibility of the analytical method (RSD between 4 and 16%). Extractions in various water sample matrices (spring, mineral and underground water) have shown similar enrichment compared to ultrapure water, revealing very low matrix effects.


Asunto(s)
Sustancias Explosivas/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Derivados del Benceno/análisis , Cromatografía Líquida de Alta Presión , Ésteres , Agua Subterránea/química , Nitrocompuestos/análisis , Reproducibilidad de los Resultados , Proyectos de Investigación , Espectrometría de Masas en Tándem
7.
Talanta ; 143: 271-278, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26078159

RESUMEN

A comprehensive method for the determination and characterization of 15 common explosive compounds in water samples by ultra-high pressure liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS) is presented. The method allows the determination of 10 nitroaromatics, two nitroamines and three nitrate ester compounds. Among these, 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) was quantified and detected for the first time in our knowledge at trace levels (0.2 µg/L). Furthermore, the collision induced dissociation (CID) mass spectrum of TATB is discussed and a fragmentation mechanism is proposed. The signal for each explosive was normalized by isotopically-enriched congeners used as internal standards. The limits of detection (LOD) reached 20 ng/L, depending on the type of energetic molecule, which are adequate for water samples and the linearity was verified from 1.4 to 2 orders of magnitude. The sensitivity of the UHPLC-APCI-MS/MS approach allows direct injection of aqueous samples without preceding extraction for concentration. Besides, the method displays a good reliability with low signal suppression in various matrices such as spring water, mineral water, acidified water or ground water. The effectiveness of the method is demonstrated by the analysis of underground water samples containing traces of explosives from test fields in France.

8.
Anal Chem ; 83(1): 133-42, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21126024

RESUMEN

Laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (LDI-FTICRMS) was used to investigate particulate matter (PM) associated with mainstream (MSS) and sidestream cigarette smokes (SSS). The high mass resolution and the high mass measurement accuracy allowed a molecular formula for each detected signal in the 150-500 m/z range to be assigned. The high number of peaks observed in mass spectra required additional data processing to extract information. In this context, Kendrick maps and Van Krevelen diagrams were drawn. These postacquisition treatments were used to more easily compare different cigarette smokes: (i) MSS from different cigarettes and (ii) MSS and SSS from the same cigarette. In both ion detection modes, most of the detected species were found to be attributed to C(6-31)H(2-35)N(0-7)O(0-9) compounds. The compounds observed in the study of SSS appeared to be more unsaturated and less oxygenated than those observed when MSS of the same cigarette was investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...